Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning
A deep Q network (DQN) (Mnih et al., 2013) is an extension of Q learning, which is a typical deep reinforcement learning method. In DQN, a Q function expresses all action values under all states, and it is approximated using a convolutional neural network. Using the approximated Q function, an optim...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-12-01
|
Series: | Frontiers in Neurorobotics |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fnbot.2019.00103/full |