Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma

Summary: To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characteri...

Full description

Bibliographic Details
Main Authors: Margaretha G.M. Roemer, Tim van de Brug, Erik Bosch, Daniella Berry, Nathalie Hijmering, Phylicia Stathi, Karin Weijers, Jeannette Doorduijn, Jacoline Bromberg, Mark van de Wiel, Bauke Ylstra, Daphne de Jong, Yongsoo Kim
Format: Article
Language:English
Published: Elsevier 2023-08-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223014086
_version_ 1797772415632146432
author Margaretha G.M. Roemer
Tim van de Brug
Erik Bosch
Daniella Berry
Nathalie Hijmering
Phylicia Stathi
Karin Weijers
Jeannette Doorduijn
Jacoline Bromberg
Mark van de Wiel
Bauke Ylstra
Daphne de Jong
Yongsoo Kim
author_facet Margaretha G.M. Roemer
Tim van de Brug
Erik Bosch
Daniella Berry
Nathalie Hijmering
Phylicia Stathi
Karin Weijers
Jeannette Doorduijn
Jacoline Bromberg
Mark van de Wiel
Bauke Ylstra
Daphne de Jong
Yongsoo Kim
author_sort Margaretha G.M. Roemer
collection DOAJ
description Summary: To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts.
first_indexed 2024-03-12T21:50:30Z
format Article
id doaj.art-b93f9e05d3bf4bc2823b75234a29a36d
institution Directory Open Access Journal
issn 2589-0042
language English
last_indexed 2024-03-12T21:50:30Z
publishDate 2023-08-01
publisher Elsevier
record_format Article
series iScience
spelling doaj.art-b93f9e05d3bf4bc2823b75234a29a36d2023-07-26T04:09:34ZengElsevieriScience2589-00422023-08-01268107331Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphomaMargaretha G.M. Roemer0Tim van de Brug1Erik Bosch2Daniella Berry3Nathalie Hijmering4Phylicia Stathi5Karin Weijers6Jeannette Doorduijn7Jacoline Bromberg8Mark van de Wiel9Bauke Ylstra10Daphne de Jong11Yongsoo Kim12Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The NetherlandsDepartment of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands; HOVON Pathology Facility and Biobank (HOP), Department of Pathology, Amsterdam University Medical Centre, Amsterdam, The NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The NetherlandsDepartment of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The NetherlandsDepartment of Neuro-Oncology, Erasmus MC Cancer Institute, Brain Tumor Center, University Medical Center Rotterdam, Rotterdam, The NetherlandsDepartment of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Corresponding authorAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Corresponding authorSummary: To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts.http://www.sciencedirect.com/science/article/pii/S2589004223014086OncologyNeuroscienceCell biologyMathematical biosciencesComputational bioinformatics
spellingShingle Margaretha G.M. Roemer
Tim van de Brug
Erik Bosch
Daniella Berry
Nathalie Hijmering
Phylicia Stathi
Karin Weijers
Jeannette Doorduijn
Jacoline Bromberg
Mark van de Wiel
Bauke Ylstra
Daphne de Jong
Yongsoo Kim
Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
iScience
Oncology
Neuroscience
Cell biology
Mathematical biosciences
Computational bioinformatics
title Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_full Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_fullStr Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_full_unstemmed Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_short Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_sort multi scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
topic Oncology
Neuroscience
Cell biology
Mathematical biosciences
Computational bioinformatics
url http://www.sciencedirect.com/science/article/pii/S2589004223014086
work_keys_str_mv AT margarethagmroemer multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT timvandebrug multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT erikbosch multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT daniellaberry multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT nathaliehijmering multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT phyliciastathi multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT karinweijers multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT jeannettedoorduijn multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT jacolinebromberg multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT markvandewiel multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT baukeylstra multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT daphnedejong multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT yongsookim multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma