On rigid derivations in rings

We prove that in a ring $R$ with an identity there exists an element $a\in R$ and a nonzero derivation $d\in Der R$ such that $ad(a)\neq 0$. A ring $R$ is said to be a $d$-rigid ring for some derivation $d \in Der R$ if  $d(a)=0$ or $ad(a)\neq 0$ for all $a \in R$. We study rings with rigid derivati...

Full description

Bibliographic Details
Main Authors: O.D. Artemovych, M.P. Lukashenko
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2014-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1349