Predicting landslide susceptibility and risks using GIS-based machine learning simulations, case of upper Nyabarongo catchment

Sustainable landslide mitigation requires appropriate approaches to predict susceptible zones. This study compared the performance of Logistic Model Tree (LMT), Random Forest (RF) and Naïve-Bayes Tree (NBT) in predicting landslide susceptibility for the upper Nyabarongo catchment (Rwanda). 196 past...

Full description

Bibliographic Details
Main Authors: Jean Baptiste Nsengiyumva, Roberto Valentino
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Geomatics, Natural Hazards & Risk
Subjects:
Online Access:http://dx.doi.org/10.1080/19475705.2020.1785555