Automatic Bone Age Assessment of Adolescents Based on Weakly-Supervised Deep Convolutional Neural Networks
Hand bone age, as the biological age of humans, can accurately reflect the development level and maturity of individuals. Bone age assessment results of adolescents can provide a theoretical basis for their growth and development and height prediction. In this study, a deep convolutional neural netw...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9523857/ |