Learning Discrete-Time Uncertain Nonlinear Systems With Probabilistic Safety and Stability Constraints
This paper presents a discrete-time dynamical system model learning method from demonstration while providing probabilistic guarantees on the safety and stability of the learned model. The controlled dynamic model of a discrete-time system with a zero-mean Gaussian process noise is approximated usin...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Open Journal of Control Systems |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9926168/ |