A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
主要な著者: | Takahiro Sato, Masafumi Fujita |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
IEEE
2021-01-01
|
シリーズ: | IEEE Access |
主題: | |
オンライン・アクセス: | https://ieeexplore.ieee.org/document/9427216/ |
類似資料
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
著者:: Victor Van der Meersch, 等
出版事項: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
著者:: Bin Wang, 等
出版事項: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
著者:: Hamdani Hamid, 等
出版事項: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
著者:: Yuanguo Lin, 等
出版事項: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
著者:: Bang-Cheng Zhang, 等
出版事項: (2023-04-01)