A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
Автори: | Takahiro Sato, Masafumi Fujita |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
IEEE
2021-01-01
|
Серія: | IEEE Access |
Предмети: | |
Онлайн доступ: | https://ieeexplore.ieee.org/document/9427216/ |
Схожі ресурси
Схожі ресурси
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
за авторством: Victor Van der Meersch, та інші
Опубліковано: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
за авторством: Bin Wang, та інші
Опубліковано: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
за авторством: Hamdani Hamid, та інші
Опубліковано: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
за авторством: Yuanguo Lin, та інші
Опубліковано: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
за авторством: Bang-Cheng Zhang, та інші
Опубліковано: (2023-04-01)