The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys
The surface finish (SF) becomes a part of the solder joint during assembly and improves the component’s reliability. Furthermore, the SF influences the solder joint’s reliability by affecting the thickness of the intermetallic compound (IMC) layer at the solder interface and copper pads. In this exp...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-09-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/15/19/6759 |
_version_ | 1797478360954175488 |
---|---|
author | Francy John Akkara Sa’d Hamasha Ali Alahmer John Evans Mohamed El Amine Belhadi Xin Wei |
author_facet | Francy John Akkara Sa’d Hamasha Ali Alahmer John Evans Mohamed El Amine Belhadi Xin Wei |
author_sort | Francy John Akkara |
collection | DOAJ |
description | The surface finish (SF) becomes a part of the solder joint during assembly and improves the component’s reliability. Furthermore, the SF influences the solder joint’s reliability by affecting the thickness of the intermetallic compound (IMC) layer at the solder interface and copper pads. In this experiment, five different alloys are used and compared with the SAC305 alloy, two of which, Innolot and SAC-Bi, are bi-based solder alloys. This study includes three common SFs: electroless nickel immersion gold (ENIG), immersion silver (ImAg), and organic solderability preserve (OSP). The performance of three surface finishes is examined in terms of component characteristic life. All of the boards were isothermally aged for twelve months at 125 °C. The boards were then exposed to 5000 cycles of thermal cycling at temperatures ranging from −40–+125 °C. Most of the current research considers only one or two factors affecting the reliability of the electronic package. This study combines the effect of multiple factors, including solder paste content, SF, isothermal aging, and thermal cycling, to ensure that the test conditions represent real-world applications. In addition, the electronics packages are assembled using commercialized alloys. The current study focuses on a high-performance alloy already present in the electronic market. The failure data were analyzed statistically using the Weibull distribution and design of experiments (DOE) analysis of variance (ANOVA) techniques. The findings reveal that the micro and uniformly distributed precipitates in solder microstructures are critical for high-reliability solder joints. Re-crystallization of the thermally cycled solder joints promotes the local formation of numerous new grains in stress-concentrated zones. As the fracture spreads along these grain boundaries and eventually fails, these new grains participate in crack propagation. Aging significantly worsens this situation. Finally, although the ENIG surface finish with its Ni layer outperforms other SFs, this does not imply that ENIG is more reliable in all solder paste/sphere/finish combinations. |
first_indexed | 2024-03-09T21:30:49Z |
format | Article |
id | doaj.art-bb33c73e7fd74f89b441955645bf4f4e |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-09T21:30:49Z |
publishDate | 2022-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-bb33c73e7fd74f89b441955645bf4f4e2023-11-23T20:56:17ZengMDPI AGMaterials1996-19442022-09-011519675910.3390/ma15196759The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder AlloysFrancy John Akkara0Sa’d Hamasha1Ali Alahmer2John Evans3Mohamed El Amine Belhadi4Xin Wei5Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USADepartment of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USADepartment of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USADepartment of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USADepartment of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USADepartment of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USAThe surface finish (SF) becomes a part of the solder joint during assembly and improves the component’s reliability. Furthermore, the SF influences the solder joint’s reliability by affecting the thickness of the intermetallic compound (IMC) layer at the solder interface and copper pads. In this experiment, five different alloys are used and compared with the SAC305 alloy, two of which, Innolot and SAC-Bi, are bi-based solder alloys. This study includes three common SFs: electroless nickel immersion gold (ENIG), immersion silver (ImAg), and organic solderability preserve (OSP). The performance of three surface finishes is examined in terms of component characteristic life. All of the boards were isothermally aged for twelve months at 125 °C. The boards were then exposed to 5000 cycles of thermal cycling at temperatures ranging from −40–+125 °C. Most of the current research considers only one or two factors affecting the reliability of the electronic package. This study combines the effect of multiple factors, including solder paste content, SF, isothermal aging, and thermal cycling, to ensure that the test conditions represent real-world applications. In addition, the electronics packages are assembled using commercialized alloys. The current study focuses on a high-performance alloy already present in the electronic market. The failure data were analyzed statistically using the Weibull distribution and design of experiments (DOE) analysis of variance (ANOVA) techniques. The findings reveal that the micro and uniformly distributed precipitates in solder microstructures are critical for high-reliability solder joints. Re-crystallization of the thermally cycled solder joints promotes the local formation of numerous new grains in stress-concentrated zones. As the fracture spreads along these grain boundaries and eventually fails, these new grains participate in crack propagation. Aging significantly worsens this situation. Finally, although the ENIG surface finish with its Ni layer outperforms other SFs, this does not imply that ENIG is more reliable in all solder paste/sphere/finish combinations.https://www.mdpi.com/1996-1944/15/19/6759surface finishesmicro-alloyENIGmicrostructureSACreliability |
spellingShingle | Francy John Akkara Sa’d Hamasha Ali Alahmer John Evans Mohamed El Amine Belhadi Xin Wei The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys Materials surface finishes micro-alloy ENIG microstructure SAC reliability |
title | The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys |
title_full | The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys |
title_fullStr | The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys |
title_full_unstemmed | The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys |
title_short | The Effect of Micro-Alloying and Surface Finishes on the Thermal Cycling Reliability of Doped SAC Solder Alloys |
title_sort | effect of micro alloying and surface finishes on the thermal cycling reliability of doped sac solder alloys |
topic | surface finishes micro-alloy ENIG microstructure SAC reliability |
url | https://www.mdpi.com/1996-1944/15/19/6759 |
work_keys_str_mv | AT francyjohnakkara theeffectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT sadhamasha theeffectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT alialahmer theeffectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT johnevans theeffectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT mohamedelaminebelhadi theeffectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT xinwei theeffectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT francyjohnakkara effectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT sadhamasha effectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT alialahmer effectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT johnevans effectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT mohamedelaminebelhadi effectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys AT xinwei effectofmicroalloyingandsurfacefinishesonthethermalcyclingreliabilityofdopedsacsolderalloys |