Short-term Hebbian learning can implement transformer-like attention.
Transformers have revolutionized machine learning models of language and vision, but their connection with neuroscience remains tenuous. Built from attention layers, they require a mass comparison of queries and keys that is difficult to perform using traditional neural circuits. Here, we show that...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLoS Computational Biology |
Online Access: | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011843&type=printable |