Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • QSAR Classification Modeling U...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
QSAR Classification Modeling Using Machine Learning with a Consensus-Based Approach for Multivariate Chemical Hazard End Points

QSAR Classification Modeling Using Machine Learning with a Consensus-Based Approach for Multivariate Chemical Hazard End Points

Bibliographic Details
Main Authors: Yunendah Nur Fuadah, Muhammad Adnan Pramudito, Lulu Firdaus, Frederique J. Vanheusden, Ki Moo Lim
Format: Article
Language:English
Published: American Chemical Society 2024-12-01
Series:ACS Omega
Online Access:https://doi.org/10.1021/acsomega.4c09356
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1021/acsomega.4c09356

Similar Items

  • An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning
    by: Yunendah Nur Fuadah, et al.
    Published: (2022-12-01)
  • Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning
    by: Yunendah Nur Fuadah, et al.
    Published: (2022-02-01)
  • Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
    by: Yunendah Nur Fuadah, et al.
    Published: (2022-11-01)
  • Machine learning approach to evaluate TdP risk of drugs using cardiac electrophysiological model including inter-individual variability
    by: Yunendah Nur Fuadah, et al.
    Published: (2023-10-01)
  • Explainable artificial intelligence (XAI) to find optimal in-silico biomarkers for cardiac drug toxicity evaluation
    by: Muhammad Adnan Pramudito, et al.
    Published: (2024-10-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs