A Dual-Branch Extraction and Classification Method Under Limited Samples of Hyperspectral Images Based on Deep Learning
The convolutional neural network (CNN) has been gradually applied to the hyperspectral images (HSIs) classification, but the lack of training samples caused by the difficulty of HSIs sample marking and ignoring of correlation between spatial and spectral information seriously restrict the HSIs class...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/12/3/536 |