On a superlinear periodic boundary value problem with vanishing Green's function

We prove the existence of positive solutions for the boundary value problem \[ \begin{cases} y^{\prime \prime }+a(t)y=\lambda g(t)f(y),\quad 0\leq t\leq 2\pi, \\ y(0)=y(2\pi ),\quad y^{\prime }(0)=y^{\prime }(2\pi ), \end{cases} \] where $\lambda $ is a positive parameter, $f$ is superlinear at $\...

Full description

Bibliographic Details
Main Author: Dang Dinh Hai
Format: Article
Language:English
Published: University of Szeged 2016-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4884