On a superlinear periodic boundary value problem with vanishing Green's function
We prove the existence of positive solutions for the boundary value problem \[ \begin{cases} y^{\prime \prime }+a(t)y=\lambda g(t)f(y),\quad 0\leq t\leq 2\pi, \\ y(0)=y(2\pi ),\quad y^{\prime }(0)=y^{\prime }(2\pi ), \end{cases} \] where $\lambda $ is a positive parameter, $f$ is superlinear at $\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2016-07-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4884 |