iMSCGnet: Iterative Multi-Scale Context-Guided Segmentation of Skin Lesion in Dermoscopic Images
Despite much effort has been devoted to skin lesion segmentation, the performance of existing methods is still not satisfactory enough for practical applications. The challenges may include fuzzy lesion boundary, uneven and low contrast, and variation of colors across space, which often lead to frag...
Egile Nagusiak: | Yujiao Tang, Zhiwen Fang, Shaofeng Yuan, Chang'An Zhan, Yanyan Xing, Joey Tianyi Zhou, Feng Yang |
---|---|
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
IEEE
2020-01-01
|
Saila: | IEEE Access |
Gaiak: | |
Sarrera elektronikoa: | https://ieeexplore.ieee.org/document/9007375/ |
Antzeko izenburuak
-
Robust fusion for skin lesion segmentation of dermoscopic images
nork: Qingqing Guo, et al.
Argitaratua: (2023-03-01) -
Semi-Supervised Skin Lesion Segmentation With Coupling CNN and Transformer Features
nork: Mohammad D. Alahmadi, et al.
Argitaratua: (2022-01-01) -
Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods
nork: Manu Goyal, et al.
Argitaratua: (2020-01-01) -
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm
nork: Halil Murat Ünver, et al.
Argitaratua: (2019-07-01) -
Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation
nork: Dang N.H. Thanh, et al.
Argitaratua: (2021-02-01)