Redesigning regulatory components of quorum-sensing system for diverse metabolic control
Existing quorum sensing (QS) circuits are less sophisticated for regulating multiple sets of genes or operons. Here, the authors redesign the luxR-luxI intergenic sequence of the lux-type QS system and apply it to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthesis...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-04-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-022-29933-x |
Summary: | Existing quorum sensing (QS) circuits are less sophisticated for regulating multiple sets of genes or operons. Here, the authors redesign the luxR-luxI intergenic sequence of the lux-type QS system and apply it to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthesis in E. coli. |
---|---|
ISSN: | 2041-1723 |