MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)

Artificial neural networks (ANN) was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB) image data of tomatoes measured using a developed computer vision system (CVS). Qualitative analysis of tomato com...

Full description

Bibliographic Details
Main Authors: Rudiati Evi Masithoh, Budi Rahardjo, Lilik Sutiarso, Agus Hardjoko
Format: Article
Language:English
Published: Universitas Gadjah Mada 2013-03-01
Series:Agritech
Online Access:https://jurnal.ugm.ac.id/agritech/article/view/9585
_version_ 1828352630423814144
author Rudiati Evi Masithoh
Budi Rahardjo
Lilik Sutiarso
Agus Hardjoko
author_facet Rudiati Evi Masithoh
Budi Rahardjo
Lilik Sutiarso
Agus Hardjoko
author_sort Rudiati Evi Masithoh
collection DOAJ
description Artificial neural networks (ANN) was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB) image data of tomatoes measured using a developed computer vision system (CVS). Qualitative analysis of tomato compositions were obtained from laboratory experiments. ANN model was based on a feedforward backpropagation network with different training functions, namely gradient descent (traingd), gradient descent with the resilient backpropagation (trainrp), Broyden, Fletcher, Goldfrab and Shanno (BFGS) quasi-Newton (trainbfg), as well as Levenberg Marquardt (trainlm).  The network structure using logsig and linear (purelin) activation function at the hidden and output layer, respectively, and using  the trainlm as a training function resulted in the best performance. Correlation coefficient (r) of training and validation process were 0.97 - 0.99 and 0.92 - 0.99, whereas the MAE values ​​ranged from 0.01 to 0.23 and 0.03 to 0.59, respectively. Keywords: Artificial neural network, trainlm, tomato, RGB   Jaringan syaraf tiruan (JST) digunakan untuk memprediksi parameter kualitas tomat, yaitu Brix, asam sitrat, karoten total, dan vitamin C. JST dikembangkan dari data Red Green Blue (RGB)  citra tomat yang diukur menggunakan computer vision system. Data kualitas tomat diperoleh dari analisis di laboratorium. Struktur model JST didasarkan pada jaringan feedforward backpropagation dengan berbagai fungsi pelatihan, yaitu gradient descent (traingd), gradient descent dengan resilient backpropagation (trainrp), Broyden, Fletcher, Goldfrab dan Shanno (BFGS) quasi-Newton (trainbfg), serta Levenberg Marquardt (trainlm). Fungsi pelatihan yang terbaik adalah menggunakan trainlm, serta pada struktur jaringan digunakan fungsi aktivasi logsig pada lapisan tersembunyi dan linier (purelin) pada lapisan keluaran. dengan 1000 epoch. Nilai koefisien korelasi (r) pada tahap pelatihan dan validasi secara berturut-turut adalah 0.97 - 0.99 dan 0.92 - 0.99; sedangkan nilai MAE berkisar antara 0.01-0.23 dan 0.03-0.59. Katakunci: Jaringan syaraf tiruan, trainlm, tomat, RGB
first_indexed 2024-04-14T01:55:37Z
format Article
id doaj.art-bd0b7bec8ba24138b04dedd4d7228267
institution Directory Open Access Journal
issn 0216-0455
2527-3825
language English
last_indexed 2024-04-14T01:55:37Z
publishDate 2013-03-01
publisher Universitas Gadjah Mada
record_format Article
series Agritech
spelling doaj.art-bd0b7bec8ba24138b04dedd4d72282672022-12-22T02:19:07ZengUniversitas Gadjah MadaAgritech0216-04552527-38252013-03-01320410.22146/agritech.95857756MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)Rudiati Evi MasithohBudi RahardjoLilik SutiarsoAgus HardjokoArtificial neural networks (ANN) was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB) image data of tomatoes measured using a developed computer vision system (CVS). Qualitative analysis of tomato compositions were obtained from laboratory experiments. ANN model was based on a feedforward backpropagation network with different training functions, namely gradient descent (traingd), gradient descent with the resilient backpropagation (trainrp), Broyden, Fletcher, Goldfrab and Shanno (BFGS) quasi-Newton (trainbfg), as well as Levenberg Marquardt (trainlm).  The network structure using logsig and linear (purelin) activation function at the hidden and output layer, respectively, and using  the trainlm as a training function resulted in the best performance. Correlation coefficient (r) of training and validation process were 0.97 - 0.99 and 0.92 - 0.99, whereas the MAE values ​​ranged from 0.01 to 0.23 and 0.03 to 0.59, respectively. Keywords: Artificial neural network, trainlm, tomato, RGB   Jaringan syaraf tiruan (JST) digunakan untuk memprediksi parameter kualitas tomat, yaitu Brix, asam sitrat, karoten total, dan vitamin C. JST dikembangkan dari data Red Green Blue (RGB)  citra tomat yang diukur menggunakan computer vision system. Data kualitas tomat diperoleh dari analisis di laboratorium. Struktur model JST didasarkan pada jaringan feedforward backpropagation dengan berbagai fungsi pelatihan, yaitu gradient descent (traingd), gradient descent dengan resilient backpropagation (trainrp), Broyden, Fletcher, Goldfrab dan Shanno (BFGS) quasi-Newton (trainbfg), serta Levenberg Marquardt (trainlm). Fungsi pelatihan yang terbaik adalah menggunakan trainlm, serta pada struktur jaringan digunakan fungsi aktivasi logsig pada lapisan tersembunyi dan linier (purelin) pada lapisan keluaran. dengan 1000 epoch. Nilai koefisien korelasi (r) pada tahap pelatihan dan validasi secara berturut-turut adalah 0.97 - 0.99 dan 0.92 - 0.99; sedangkan nilai MAE berkisar antara 0.01-0.23 dan 0.03-0.59. Katakunci: Jaringan syaraf tiruan, trainlm, tomat, RGBhttps://jurnal.ugm.ac.id/agritech/article/view/9585
spellingShingle Rudiati Evi Masithoh
Budi Rahardjo
Lilik Sutiarso
Agus Hardjoko
MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)
Agritech
title MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)
title_full MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)
title_fullStr MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)
title_full_unstemmed MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)
title_short MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color)
title_sort model jaringan syaraf tiruan untuk memprediksi parameter kualitas tomat berdasarkan parameter warna rgb an artificial neural network model for predicting tomato quality parameters based on color
url https://jurnal.ugm.ac.id/agritech/article/view/9585
work_keys_str_mv AT rudiatievimasithoh modeljaringansyaraftiruanuntukmemprediksiparameterkualitastomatberdasarkanparameterwarnargbanartificialneuralnetworkmodelforpredictingtomatoqualityparametersbasedoncolor
AT budirahardjo modeljaringansyaraftiruanuntukmemprediksiparameterkualitastomatberdasarkanparameterwarnargbanartificialneuralnetworkmodelforpredictingtomatoqualityparametersbasedoncolor
AT liliksutiarso modeljaringansyaraftiruanuntukmemprediksiparameterkualitastomatberdasarkanparameterwarnargbanartificialneuralnetworkmodelforpredictingtomatoqualityparametersbasedoncolor
AT agushardjoko modeljaringansyaraftiruanuntukmemprediksiparameterkualitastomatberdasarkanparameterwarnargbanartificialneuralnetworkmodelforpredictingtomatoqualityparametersbasedoncolor