Targeted inhibition of STAT3 (Tyr705) by xanthatin alleviates osteoarthritis progression through the NF-κB signaling pathway

The transcription factor, signal transducer, and stimulator of transcription 3 (STAT3) is a potential target in osteoarthritis (OA) treatment. Although xanthatin (XA), a biologically active substance derived from Xanthium strumarium L, specifically inhibits STAT3 phosphorylation at Tyr705, the mecha...

Full description

Bibliographic Details
Main Authors: Yangjun Xu, Zhuolin Chen, Xuanyuan Lu, Jiewen Zheng, Xuewen Liu, Tan Zhang, Wanlei Yang, Yu Qian
Format: Article
Language:English
Published: Elsevier 2024-05-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332224003354
Description
Summary:The transcription factor, signal transducer, and stimulator of transcription 3 (STAT3) is a potential target in osteoarthritis (OA) treatment. Although xanthatin (XA), a biologically active substance derived from Xanthium strumarium L, specifically inhibits STAT3 phosphorylation at Tyr705, the mechanism underlying its inhibitory effect on OA progression remains unclear. In this study, our objective was to explore the therapeutic effects exerted by XA on OA and the underlying molecular mechanisms. The effects of XA treatment on mouse OA models subjected to destabilization of the medial meniscus using medial collateral ligament transection, as well as on interleukin-1β (IL-1β)-induced mouse chondrocytes, were examined. Histological changes in cartilage and subchondral bone (SCB), as well as changes in the expression levels of osteophytes, cartilage degeneration- and osteoclast differentiation-related factors, and the role of XA-related signaling pathways in human cartilage tissue, were studied using different techniques. XA inhibited STAT3 phosphorylation at Tyr705 and further attenuated the activity of nuclear factor-κB (NF-κB) in chondrocytes and osteoclasts. In vitro, XA administration alleviated pro-inflammatory cytokine release, extracellular matrix catabolism, and RANKL-mediated osteoclast differentiation. In vivo, intraperitoneal injection of XA exerted a protective effect on cartilage degeneration and SCB loss. Similarly, XA exerted a protective effect on human cartilage tissue by inhibiting the STAT3/NF-κB signaling pathway. Overall, our study elucidated the therapeutic potential of XA as a small-molecule inhibitor of STAT3-driven OA progression. This discovery may help enhance innovative clinical interventions against OA.
ISSN:0753-3322