Choosing the right artificial intelligence solutions for your radiology department: key factors to consider
The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusi...
主要な著者: | Deniz Alis, Toygar Tanyel, Emine Meltem, Mustafa Ege Seker, Delal Seker, Hakkı Muammer Karakaş, Ercan Karaarslan, İlkay Öksüz |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Galenos Publishing House
2024-11-01
|
シリーズ: | Diagnostic and Interventional Radiology |
主題: | |
オンライン・アクセス: | https://www.dirjournal.org/articles/choosing-the-right-artificial-intelligence-solutions-for-your-radiology-department-key-factors-to-consider/doi/dir.2024.232658 |
類似資料
-
Patient survey of value in relation to radiology: results from a survey of the European Society of Radiology (ESR) value-based radiology subcommittee
著者:: European Society of Radiology (ESR)
出版事項: (2021-01-01) -
Anatomically guided self-adapting deep neural network for clinically significant prostate cancer detection on bi-parametric MRI: a multi-center study
著者:: Ahmet Karagoz, 等
出版事項: (2023-06-01) -
Book Review: Radiology in Global Health
著者:: Yogesh Jha, 等
出版事項: (2015-03-01) -
Sustainability within interventional radiology: opportunities and hurdles
著者:: Anouk de Reeder, 等
出版事項: (2023-03-01) -
The role of radiologist in the changing world of healthcare: a White Paper of the European Society of Radiology (ESR)
著者:: European Society of Radiology (ESR)
出版事項: (2022-06-01)