Integrating inverse reinforcement learning into data-driven mechanistic computational models: a novel paradigm to decode cancer cell heterogeneity

Cellular heterogeneity is a ubiquitous aspect of biology and a major obstacle to successful cancer treatment. Several techniques have emerged to quantify heterogeneity in live cells along axes including cellular migration, morphology, growth, and signaling. Crucially, these studies reveal that cellu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Patrick C. Kinnunen, Kenneth K. Y. Ho, Siddhartha Srivastava, Chengyang Huang, Wanggang Shen, Krishna Garikipati, Gary D. Luker, Nikola Banovic, Xun Huan, Jennifer J. Linderman, Kathryn E. Luker
Format: Artikel
Sprache:English
Veröffentlicht: Frontiers Media S.A. 2024-03-01
Schriftenreihe:Frontiers in Systems Biology
Schlagworte:
Online Zugang:https://www.frontiersin.org/articles/10.3389/fsysb.2024.1333760/full