Deciphering protein evolution and fitness landscapes with latent space models

Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Xinqiang Ding, Zhengting Zou, Charles L. Brooks III
التنسيق: مقال
اللغة:English
منشور في: Nature Portfolio 2019-12-01
سلاسل:Nature Communications
الوصول للمادة أونلاين:https://doi.org/10.1038/s41467-019-13633-0