Euclidean Quotient Rings of Z[√−5]
For a prime p, we prove elementarily that the ring Z[√−5, 1/p] is Euclidean if and only if it is a PID iff p = 2 or p is congruent to 3 or 7 modulo 20.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2014-12-01
|
Series: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
Subjects: | |
Online Access: | https://doi.org/10.2478/auom-2014-0010 |