Euclidean Quotient Rings of Z[√−5]

For a prime p, we prove elementarily that the ring Z[√−5, 1/p] is Euclidean if and only if it is a PID iff p = 2 or p is congruent to 3 or 7 modulo 20.

Bibliographic Details
Main Authors: Dumitrescu Tiberiu, Gica Alexandru
Format: Article
Language:English
Published: Sciendo 2014-12-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2014-0010