Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host

Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and high...

Full description

Bibliographic Details
Main Authors: Francesca D'Angelo, Elena Fernández-Fueyo, Pierre Simon Garcia, Helena Shomar, Martin Pelosse, Rita Rebelo Manuel, Ferhat Büke, Siyi Liu, Niels van den Broek, Nicolas Duraffourg, Carol de Ram, Martin Pabst, Emmanuelle Bouveret, Simonetta Gribaldo, Béatrice Py, Sandrine Ollagnier de Choudens, Frédéric Barras, Gregory Bokinsky
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2022-03-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/70936
_version_ 1811200482807382016
author Francesca D'Angelo
Elena Fernández-Fueyo
Pierre Simon Garcia
Helena Shomar
Martin Pelosse
Rita Rebelo Manuel
Ferhat Büke
Siyi Liu
Niels van den Broek
Nicolas Duraffourg
Carol de Ram
Martin Pabst
Emmanuelle Bouveret
Simonetta Gribaldo
Béatrice Py
Sandrine Ollagnier de Choudens
Frédéric Barras
Gregory Bokinsky
author_facet Francesca D'Angelo
Elena Fernández-Fueyo
Pierre Simon Garcia
Helena Shomar
Martin Pelosse
Rita Rebelo Manuel
Ferhat Büke
Siyi Liu
Niels van den Broek
Nicolas Duraffourg
Carol de Ram
Martin Pabst
Emmanuelle Bouveret
Simonetta Gribaldo
Béatrice Py
Sandrine Ollagnier de Choudens
Frédéric Barras
Gregory Bokinsky
author_sort Francesca D'Angelo
collection DOAJ
description Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.
first_indexed 2024-04-12T02:04:55Z
format Article
id doaj.art-bff937dfc81944c48a5763b78bc936c6
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-12T02:04:55Z
publishDate 2022-03-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-bff937dfc81944c48a5763b78bc936c62022-12-22T03:52:35ZengeLife Sciences Publications LtdeLife2050-084X2022-03-011110.7554/eLife.70936Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic hostFrancesca D'Angelo0https://orcid.org/0000-0001-5880-1087Elena Fernández-Fueyo1Pierre Simon Garcia2Helena Shomar3https://orcid.org/0000-0002-1090-2871Martin Pelosse4Rita Rebelo Manuel5https://orcid.org/0000-0001-8068-2053Ferhat Büke6Siyi Liu7Niels van den Broek8Nicolas Duraffourg9Carol de Ram10Martin Pabst11Emmanuelle Bouveret12Simonetta Gribaldo13https://orcid.org/0000-0002-7662-021XBéatrice Py14Sandrine Ollagnier de Choudens15https://orcid.org/0000-0002-0080-6659Frédéric Barras16https://orcid.org/0000-0003-3458-2574Gregory Bokinsky17https://orcid.org/0000-0002-7256-4492Unit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, FranceDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsUnit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, France; Institut Pasteur, Université de Paris, CNRS UMR6047, Evolutionary Biology of the Microbial Cell, Department of Microbiology, Paris, FranceDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsUniv. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, FranceDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsAix-Marseille Université-CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies Biotechnologie, Marseille, FranceDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsUniv. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, FranceDepartment of Biotechnology, Delft University of Technology, Delft, NetherlandsDepartment of Biotechnology, Delft University of Technology, Delft, NetherlandsUnit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, FranceInstitut Pasteur, Université de Paris, CNRS UMR6047, Evolutionary Biology of the Microbial Cell, Department of Microbiology, Paris, FranceAix-Marseille Université-CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies Biotechnologie, Marseille, FranceUniv. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, FranceUnit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, FranceDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsIron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.https://elifesciences.org/articles/70936iron-sulfur enzymehorizontal gene transfermicrobial engineeringelectron transfer protein
spellingShingle Francesca D'Angelo
Elena Fernández-Fueyo
Pierre Simon Garcia
Helena Shomar
Martin Pelosse
Rita Rebelo Manuel
Ferhat Büke
Siyi Liu
Niels van den Broek
Nicolas Duraffourg
Carol de Ram
Martin Pabst
Emmanuelle Bouveret
Simonetta Gribaldo
Béatrice Py
Sandrine Ollagnier de Choudens
Frédéric Barras
Gregory Bokinsky
Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
eLife
iron-sulfur enzyme
horizontal gene transfer
microbial engineering
electron transfer protein
title Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
title_full Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
title_fullStr Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
title_full_unstemmed Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
title_short Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host
title_sort cellular assays identify barriers impeding iron sulfur enzyme activity in a non native prokaryotic host
topic iron-sulfur enzyme
horizontal gene transfer
microbial engineering
electron transfer protein
url https://elifesciences.org/articles/70936
work_keys_str_mv AT francescadangelo cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT elenafernandezfueyo cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT pierresimongarcia cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT helenashomar cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT martinpelosse cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT ritarebelomanuel cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT ferhatbuke cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT siyiliu cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT nielsvandenbroek cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT nicolasduraffourg cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT carolderam cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT martinpabst cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT emmanuellebouveret cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT simonettagribaldo cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT beatricepy cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT sandrineollagnierdechoudens cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT fredericbarras cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost
AT gregorybokinsky cellularassaysidentifybarriersimpedingironsulfurenzymeactivityinanonnativeprokaryotichost