On the non-autonomous Hopf bifurcation problem: systems with rapidly varying coefficients.
We consider a $2$-dimensional ordinary differential equation (ODE) depending on a parameter $\epsilon$. If the ODE is autonomous the supercritical Andronov–Hopf bifurcation theory gives sufficient conditions for the genesis of a repeller–attractor pair, made up by a critical point and a stable limit...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2019-08-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6712 |