The existence of sign-changing solutions for Schrödinger-Kirchhoff problems in R<sup>3</sup>
In this paper, we consider the following Kirchhoff-type equation: $ -\left(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+u = |u|^{p-1}u,\quad {\rm{in }}\; \mathbb{R}^3, $ where $ a $, $ b > 0 $, $ p \in (1, 5) $. By considering a minimization problem on a special constraint set...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-04-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/doi/10.3934/math.2021395?viewType=HTML |