The existence of sign-changing solutions for Schrödinger-Kirchhoff problems in R<sup>3</sup>

In this paper, we consider the following Kirchhoff-type equation: $ -\left(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+u = |u|^{p-1}u,\quad {\rm{in }}\; \mathbb{R}^3, $ where $ a $, $ b &gt; 0 $, $ p \in (1, 5) $. By considering a minimization problem on a special constraint set...

Full description

Bibliographic Details
Main Authors: Ting Xiao, Yaolan Tang, Qiongfen Zhang
Format: Article
Language:English
Published: AIMS Press 2021-04-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021395?viewType=HTML