Using Gene Editing to Establish a Safeguard System for Pluripotent Stem-Cell-Based Therapies

Summary: A major challenge in using human pluripotent stem cells (hPSCs) in therapy is the risk of teratoma formation due to contaminating undifferentiated stem cells. We used CRISPR-Cas9 for in-frame insertion of a suicide gene, iC9, into the endogenous SOX2 locus in human embryonic stem cell (ESC)...

Full description

Bibliographic Details
Main Authors: Youjun Wu, Tammy Chang, Yan Long, He Huang, Fouad Kandeel, Jiing-Kuan Yee
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004219304894
Description
Summary:Summary: A major challenge in using human pluripotent stem cells (hPSCs) in therapy is the risk of teratoma formation due to contaminating undifferentiated stem cells. We used CRISPR-Cas9 for in-frame insertion of a suicide gene, iC9, into the endogenous SOX2 locus in human embryonic stem cell (ESC) line H1 for specific eradication of undifferentiated cells without affecting differentiated cells. This locus was chosen over NANOG and OCT4, two other well-characterized stem cell loci, due to significantly reduced off-target effect. We showed that undifferentiated H1-iC9 cells were induced to apoptosis by iC9 inducer AP1903, whereas differentiated cell lineages including hematopoietic cells, neurons, and islet beta-like cells were not affected. We also showed that AP1903 selectively removed undifferentiated H1-iC9 cells from a mixed cell population. This strategy therefore provides a layer of safety control before transplantation of a stem-cell-derived product in therapy. : Cellular Therapy; Techniques in Genetics; Stem Cells Research Subject Areas: Cellular Therapy, Techniques in Genetics, Stem Cells Research
ISSN:2589-0042