Exploring Common and Label-Specific Features for Multi-Label Learning With Local Label Correlations
In multi-label learning, instances can be associated with a set of class labels. The existing multi-label feature selection (MLFS) methods generally adopt either of these two strategies, namely, selecting a subset of features that is shared by all labels (common features) or exploring the most discr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9032184/ |