Two Random Forest Models for the Non‐Iterative Parametrization of Surface‐Layer Turbulent Fluxes
Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on th...
Główni autorzy: | Yingxin Yu, Chloe Yuchao Gao, Yubin Li, Zhiqiu Gao |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
Wiley
2023-11-01
|
Seria: | Geophysical Research Letters |
Dostęp online: | https://doi.org/10.1029/2023GL105923 |
Podobne zapisy
-
A Universal Approach for the Non‐Iterative Parametrization of Near‐Surface Turbulent Fluxes in Climate and Weather Prediction Models
od: V. M. Gryanik, i wsp.
Wydane: (2021-08-01) -
Quantitative Evaluation of Wavelet Analysis Method for Turbulent Flux Calculation of Non‐Stationary Series
od: Yubin Li, i wsp.
Wydane: (2023-03-01) -
Observations of turbulent fluxes and turbulence dynamics in the ocean surface boundary layer
od: Gerbi, Gregory Peter
Wydane: (2009) -
Surface Layer Drag Coefficient at Different Radius Ranges in Tropical Cyclones
od: Lei Ye, i wsp.
Wydane: (2022-02-01) -
An improved non-iterative surface layer flux scheme for atmospheric stable stratification conditions
od: Y. Li, i wsp.
Wydane: (2014-03-01)