Two Random Forest Models for the Non‐Iterative Parametrization of Surface‐Layer Turbulent Fluxes
Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on th...
Автори: | Yingxin Yu, Chloe Yuchao Gao, Yubin Li, Zhiqiu Gao |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Wiley
2023-11-01
|
Серія: | Geophysical Research Letters |
Онлайн доступ: | https://doi.org/10.1029/2023GL105923 |
Схожі ресурси
Схожі ресурси
-
A Universal Approach for the Non‐Iterative Parametrization of Near‐Surface Turbulent Fluxes in Climate and Weather Prediction Models
за авторством: V. M. Gryanik, та інші
Опубліковано: (2021-08-01) -
Quantitative Evaluation of Wavelet Analysis Method for Turbulent Flux Calculation of Non‐Stationary Series
за авторством: Yubin Li, та інші
Опубліковано: (2023-03-01) -
Observations of turbulent fluxes and turbulence dynamics in the ocean surface boundary layer
за авторством: Gerbi, Gregory Peter
Опубліковано: (2009) -
Surface Layer Drag Coefficient at Different Radius Ranges in Tropical Cyclones
за авторством: Lei Ye, та інші
Опубліковано: (2022-02-01) -
An improved non-iterative surface layer flux scheme for atmospheric stable stratification conditions
за авторством: Y. Li, та інші
Опубліковано: (2014-03-01)