A law of iterated logarithm for the subfractional Brownian motion and an application
Abstract Let SH={StH,t≥0} $S^{H}=\{S^{H}_{t},t\geq0\}$ be a sub-fractional Brownian motion with Hurst index 0<H<1 $0< H<1$. In this paper, we give a local law of the iterated logarithm of the form lim sups↓0|St+sH−StH|sH2log+log(1/s)=1, $$\limsup_{s\downarrow0}\frac{ \vert S^{H}_{t+s}-S^...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-04-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1675-1 |