A law of iterated logarithm for the subfractional Brownian motion and an application

Abstract Let SH={StH,t≥0} $S^{H}=\{S^{H}_{t},t\geq0\}$ be a sub-fractional Brownian motion with Hurst index 0<H<1 $0< H<1$. In this paper, we give a local law of the iterated logarithm of the form lim sups↓0|St+sH−StH|sH2log+log(1/s)=1, $$\limsup_{s\downarrow0}\frac{ \vert S^{H}_{t+s}-S^...

Full description

Bibliographic Details
Main Authors: Hongsheng Qi, Litan Yan
Format: Article
Language:English
Published: SpringerOpen 2018-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1675-1