A law of iterated logarithm for the subfractional Brownian motion and an application

Abstract Let SH={StH,t≥0} $S^{H}=\{S^{H}_{t},t\geq0\}$ be a sub-fractional Brownian motion with Hurst index 0<H<1 $0< H<1$. In this paper, we give a local law of the iterated logarithm of the form lim sups↓0|St+sH−StH|sH2log+log(1/s)=1, $$\limsup_{s\downarrow0}\frac{ \vert S^{H}_{t+s}-S^...

Full description

Bibliographic Details
Main Authors: Hongsheng Qi, Litan Yan
Format: Article
Language:English
Published: SpringerOpen 2018-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1675-1
_version_ 1818319484240265216
author Hongsheng Qi
Litan Yan
author_facet Hongsheng Qi
Litan Yan
author_sort Hongsheng Qi
collection DOAJ
description Abstract Let SH={StH,t≥0} $S^{H}=\{S^{H}_{t},t\geq0\}$ be a sub-fractional Brownian motion with Hurst index 0<H<1 $0< H<1$. In this paper, we give a local law of the iterated logarithm of the form lim sups↓0|St+sH−StH|sH2log+log(1/s)=1, $$\limsup_{s\downarrow0}\frac{ \vert S^{H}_{t+s}-S^{H}_{t} \vert }{ s^{H}\sqrt {2\log^{+}\log(1/s)}}=1, $$ almost surely, for all t>0 $t > 0$, where log+x=max{1,logx} $\log^{+}x=\max{\{1, \log x\}}$ for x≥0 $x\geq0$. As an application, we introduce the ΦH $\Phi_{H}$-variation of SH $S^{H}$ driven by ΦH(x):=[x/2log+log+(1/x)]1/H $\Phi_{H}(x):= [x/\sqrt{2\log^{+}\log ^{+}(1/x)} ]^{1/H}$ (x>0) $(x>0)$ with ΦH(0)=0 $\Phi_{H}(0)=0$.
first_indexed 2024-12-13T10:09:51Z
format Article
id doaj.art-c2c91a9d39cf41588a147a4504ed8d6a
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-13T10:09:51Z
publishDate 2018-04-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-c2c91a9d39cf41588a147a4504ed8d6a2022-12-21T23:51:28ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-04-012018111810.1186/s13660-018-1675-1A law of iterated logarithm for the subfractional Brownian motion and an applicationHongsheng Qi0Litan Yan1Department of Mathematics, College of Science, Bengbu UniversityDepartment of Mathematics, College of Science, Donghua UniversityAbstract Let SH={StH,t≥0} $S^{H}=\{S^{H}_{t},t\geq0\}$ be a sub-fractional Brownian motion with Hurst index 0<H<1 $0< H<1$. In this paper, we give a local law of the iterated logarithm of the form lim sups↓0|St+sH−StH|sH2log+log(1/s)=1, $$\limsup_{s\downarrow0}\frac{ \vert S^{H}_{t+s}-S^{H}_{t} \vert }{ s^{H}\sqrt {2\log^{+}\log(1/s)}}=1, $$ almost surely, for all t>0 $t > 0$, where log+x=max{1,logx} $\log^{+}x=\max{\{1, \log x\}}$ for x≥0 $x\geq0$. As an application, we introduce the ΦH $\Phi_{H}$-variation of SH $S^{H}$ driven by ΦH(x):=[x/2log+log+(1/x)]1/H $\Phi_{H}(x):= [x/\sqrt{2\log^{+}\log ^{+}(1/x)} ]^{1/H}$ (x>0) $(x>0)$ with ΦH(0)=0 $\Phi_{H}(0)=0$.http://link.springer.com/article/10.1186/s13660-018-1675-1Sub-fractional Brownian motionIterated logarithmΦ-variation
spellingShingle Hongsheng Qi
Litan Yan
A law of iterated logarithm for the subfractional Brownian motion and an application
Journal of Inequalities and Applications
Sub-fractional Brownian motion
Iterated logarithm
Φ-variation
title A law of iterated logarithm for the subfractional Brownian motion and an application
title_full A law of iterated logarithm for the subfractional Brownian motion and an application
title_fullStr A law of iterated logarithm for the subfractional Brownian motion and an application
title_full_unstemmed A law of iterated logarithm for the subfractional Brownian motion and an application
title_short A law of iterated logarithm for the subfractional Brownian motion and an application
title_sort law of iterated logarithm for the subfractional brownian motion and an application
topic Sub-fractional Brownian motion
Iterated logarithm
Φ-variation
url http://link.springer.com/article/10.1186/s13660-018-1675-1
work_keys_str_mv AT hongshengqi alawofiteratedlogarithmforthesubfractionalbrownianmotionandanapplication
AT litanyan alawofiteratedlogarithmforthesubfractionalbrownianmotionandanapplication
AT hongshengqi lawofiteratedlogarithmforthesubfractionalbrownianmotionandanapplication
AT litanyan lawofiteratedlogarithmforthesubfractionalbrownianmotionandanapplication