On the Erdős–Lax Inequality
The Erdős–Lax Theorem states that if $P(z)=\sum _{\nu =1}^n a_{\nu }z^{\nu }$ is a polynomial of degree $n$ having no zeros in $|z|<1,$ then \begin{equation} \max _{|z|=1}|P^{\prime }(z)|\le \frac{n}{2}\max _{|z|=1}|P(z)|. \end{equation} In this paper, we prove a sharpening of the above inequali...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2022-09-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.141/ |