Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
Mitochondrial complex I deficiency is frequent in congenital, neurologic and cardiovascular disease. Here the authors demonstrate that Complex I stimulates the turnover of a mitochondrial calcium channel, which becomes stabilized during Complex I deficiency, preserving energetic homeostasis.
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-05-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-022-30236-4 |