A Silicon Nanowire Ferroelectric Field‐Effect Transistor
Abstract The design and characterization of a Schottky‐type ferroelectric field‐effect transistor based on a nominally undoped silicon nanowire are reported. The nanowire transistor is fabricated by top‐down technology starting from a silicon‐on insulator wafer. A thin ferroelectric Hf0.38Zr0.62O2 l...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2020-04-01
|
Series: | Advanced Electronic Materials |
Subjects: | |
Online Access: | https://doi.org/10.1002/aelm.201901244 |
_version_ | 1827789744086450176 |
---|---|
author | Violetta Sessi Maik Simon Halid Mulaosmanovic Darius Pohl Markus Loeffler Tom Mauersberger Franz P. G. Fengler Terence Mittmann Claudia Richter Stefan Slesazeck Thomas Mikolajick Walter M. Weber |
author_facet | Violetta Sessi Maik Simon Halid Mulaosmanovic Darius Pohl Markus Loeffler Tom Mauersberger Franz P. G. Fengler Terence Mittmann Claudia Richter Stefan Slesazeck Thomas Mikolajick Walter M. Weber |
author_sort | Violetta Sessi |
collection | DOAJ |
description | Abstract The design and characterization of a Schottky‐type ferroelectric field‐effect transistor based on a nominally undoped silicon nanowire are reported. The nanowire transistor is fabricated by top‐down technology starting from a silicon‐on insulator wafer. A thin ferroelectric Hf0.38Zr0.62O2 layer is integrated via a gate‐first approach. Abrupt Schottky source/drain contacts to the undoped silicon are provided by NiSi2 formation. Two distinct nonvolatile transistor states (programmed and erased) are observed in correspondence to negative and positive polarization in the ferroelectric layer, delivering a memory window of ≈1.5 V and, differently to conventional ferroelectric field effect transistors, yielding an on‐current difference of up to 30%. These results are interpreted as a combination of effects, arising from the proximity of the ferroelectric layer to both the channel and the Schottky‐junction regions. The threshold voltage shift, due to a polarization field acting on the channel, adds up to a polarization field‐driven tuning of the current injection through the Schottky‐source junction. This provides a strategy for manufacturing Schottky‐type nanoscale transistors with the add‐on nonvolatile option, following a complementary metal‐oxide‐semiconductor compatible process. In particular, the device concept is of great interest for achieving nonvolatile polarity modification in reconfigurable field‐effect transistors. |
first_indexed | 2024-03-11T17:25:07Z |
format | Article |
id | doaj.art-c348f539b37340f5b1ff290327d2013a |
institution | Directory Open Access Journal |
issn | 2199-160X |
language | English |
last_indexed | 2024-03-11T17:25:07Z |
publishDate | 2020-04-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Electronic Materials |
spelling | doaj.art-c348f539b37340f5b1ff290327d2013a2023-10-19T05:02:13ZengWiley-VCHAdvanced Electronic Materials2199-160X2020-04-0164n/an/a10.1002/aelm.201901244A Silicon Nanowire Ferroelectric Field‐Effect TransistorVioletta Sessi0Maik Simon1Halid Mulaosmanovic2Darius Pohl3Markus Loeffler4Tom Mauersberger5Franz P. G. Fengler6Terence Mittmann7Claudia Richter8Stefan Slesazeck9Thomas Mikolajick10Walter M. Weber11Technische Universität Dresden Institut für Halbleiter‐ und Mikrosystemtechnik Professur für Nanoelektronische Materialien Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyCenter for Advancing Electronics Dresden (CfAED) 01069 Dresden GermanyCenter for Advancing Electronics Dresden (CfAED) 01069 Dresden GermanyTechnische Universität Dresden Institut für Halbleiter‐ und Mikrosystemtechnik Professur für Nanoelektronische Materialien Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyTechnische Universität Dresden Institut für Halbleiter‐ und Mikrosystemtechnik Professur für Nanoelektronische Materialien Nöthnitzer Str. 64a 01187 Dresden GermanyCenter for Advancing Electronics Dresden (CfAED) 01069 Dresden GermanyAbstract The design and characterization of a Schottky‐type ferroelectric field‐effect transistor based on a nominally undoped silicon nanowire are reported. The nanowire transistor is fabricated by top‐down technology starting from a silicon‐on insulator wafer. A thin ferroelectric Hf0.38Zr0.62O2 layer is integrated via a gate‐first approach. Abrupt Schottky source/drain contacts to the undoped silicon are provided by NiSi2 formation. Two distinct nonvolatile transistor states (programmed and erased) are observed in correspondence to negative and positive polarization in the ferroelectric layer, delivering a memory window of ≈1.5 V and, differently to conventional ferroelectric field effect transistors, yielding an on‐current difference of up to 30%. These results are interpreted as a combination of effects, arising from the proximity of the ferroelectric layer to both the channel and the Schottky‐junction regions. The threshold voltage shift, due to a polarization field acting on the channel, adds up to a polarization field‐driven tuning of the current injection through the Schottky‐source junction. This provides a strategy for manufacturing Schottky‐type nanoscale transistors with the add‐on nonvolatile option, following a complementary metal‐oxide‐semiconductor compatible process. In particular, the device concept is of great interest for achieving nonvolatile polarity modification in reconfigurable field‐effect transistors.https://doi.org/10.1002/aelm.201901244FeFETsferroelectricsHZOmultigate FETsnonvolatile memorySchottky‐barrier FETs |
spellingShingle | Violetta Sessi Maik Simon Halid Mulaosmanovic Darius Pohl Markus Loeffler Tom Mauersberger Franz P. G. Fengler Terence Mittmann Claudia Richter Stefan Slesazeck Thomas Mikolajick Walter M. Weber A Silicon Nanowire Ferroelectric Field‐Effect Transistor Advanced Electronic Materials FeFETs ferroelectrics HZO multigate FETs nonvolatile memory Schottky‐barrier FETs |
title | A Silicon Nanowire Ferroelectric Field‐Effect Transistor |
title_full | A Silicon Nanowire Ferroelectric Field‐Effect Transistor |
title_fullStr | A Silicon Nanowire Ferroelectric Field‐Effect Transistor |
title_full_unstemmed | A Silicon Nanowire Ferroelectric Field‐Effect Transistor |
title_short | A Silicon Nanowire Ferroelectric Field‐Effect Transistor |
title_sort | silicon nanowire ferroelectric field effect transistor |
topic | FeFETs ferroelectrics HZO multigate FETs nonvolatile memory Schottky‐barrier FETs |
url | https://doi.org/10.1002/aelm.201901244 |
work_keys_str_mv | AT violettasessi asiliconnanowireferroelectricfieldeffecttransistor AT maiksimon asiliconnanowireferroelectricfieldeffecttransistor AT halidmulaosmanovic asiliconnanowireferroelectricfieldeffecttransistor AT dariuspohl asiliconnanowireferroelectricfieldeffecttransistor AT markusloeffler asiliconnanowireferroelectricfieldeffecttransistor AT tommauersberger asiliconnanowireferroelectricfieldeffecttransistor AT franzpgfengler asiliconnanowireferroelectricfieldeffecttransistor AT terencemittmann asiliconnanowireferroelectricfieldeffecttransistor AT claudiarichter asiliconnanowireferroelectricfieldeffecttransistor AT stefanslesazeck asiliconnanowireferroelectricfieldeffecttransistor AT thomasmikolajick asiliconnanowireferroelectricfieldeffecttransistor AT waltermweber asiliconnanowireferroelectricfieldeffecttransistor AT violettasessi siliconnanowireferroelectricfieldeffecttransistor AT maiksimon siliconnanowireferroelectricfieldeffecttransistor AT halidmulaosmanovic siliconnanowireferroelectricfieldeffecttransistor AT dariuspohl siliconnanowireferroelectricfieldeffecttransistor AT markusloeffler siliconnanowireferroelectricfieldeffecttransistor AT tommauersberger siliconnanowireferroelectricfieldeffecttransistor AT franzpgfengler siliconnanowireferroelectricfieldeffecttransistor AT terencemittmann siliconnanowireferroelectricfieldeffecttransistor AT claudiarichter siliconnanowireferroelectricfieldeffecttransistor AT stefanslesazeck siliconnanowireferroelectricfieldeffecttransistor AT thomasmikolajick siliconnanowireferroelectricfieldeffecttransistor AT waltermweber siliconnanowireferroelectricfieldeffecttransistor |