A Silicon Nanowire Ferroelectric Field‐Effect Transistor

Abstract The design and characterization of a Schottky‐type ferroelectric field‐effect transistor based on a nominally undoped silicon nanowire are reported. The nanowire transistor is fabricated by top‐down technology starting from a silicon‐on insulator wafer. A thin ferroelectric Hf0.38Zr0.62O2 l...

Full description

Bibliographic Details
Main Authors: Violetta Sessi, Maik Simon, Halid Mulaosmanovic, Darius Pohl, Markus Loeffler, Tom Mauersberger, Franz P. G. Fengler, Terence Mittmann, Claudia Richter, Stefan Slesazeck, Thomas Mikolajick, Walter M. Weber
Format: Article
Language:English
Published: Wiley-VCH 2020-04-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.201901244
_version_ 1827789744086450176
author Violetta Sessi
Maik Simon
Halid Mulaosmanovic
Darius Pohl
Markus Loeffler
Tom Mauersberger
Franz P. G. Fengler
Terence Mittmann
Claudia Richter
Stefan Slesazeck
Thomas Mikolajick
Walter M. Weber
author_facet Violetta Sessi
Maik Simon
Halid Mulaosmanovic
Darius Pohl
Markus Loeffler
Tom Mauersberger
Franz P. G. Fengler
Terence Mittmann
Claudia Richter
Stefan Slesazeck
Thomas Mikolajick
Walter M. Weber
author_sort Violetta Sessi
collection DOAJ
description Abstract The design and characterization of a Schottky‐type ferroelectric field‐effect transistor based on a nominally undoped silicon nanowire are reported. The nanowire transistor is fabricated by top‐down technology starting from a silicon‐on insulator wafer. A thin ferroelectric Hf0.38Zr0.62O2 layer is integrated via a gate‐first approach. Abrupt Schottky source/drain contacts to the undoped silicon are provided by NiSi2 formation. Two distinct nonvolatile transistor states (programmed and erased) are observed in correspondence to negative and positive polarization in the ferroelectric layer, delivering a memory window of ≈1.5 V and, differently to conventional ferroelectric field effect transistors, yielding an on‐current difference of up to 30%. These results are interpreted as a combination of effects, arising from the proximity of the ferroelectric layer to both the channel and the Schottky‐junction regions. The threshold voltage shift, due to a polarization field acting on the channel, adds up to a polarization field‐driven tuning of the current injection through the Schottky‐source junction. This provides a strategy for manufacturing Schottky‐type nanoscale transistors with the add‐on nonvolatile option, following a complementary metal‐oxide‐semiconductor compatible process. In particular, the device concept is of great interest for achieving nonvolatile polarity modification in reconfigurable field‐effect transistors.
first_indexed 2024-03-11T17:25:07Z
format Article
id doaj.art-c348f539b37340f5b1ff290327d2013a
institution Directory Open Access Journal
issn 2199-160X
language English
last_indexed 2024-03-11T17:25:07Z
publishDate 2020-04-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj.art-c348f539b37340f5b1ff290327d2013a2023-10-19T05:02:13ZengWiley-VCHAdvanced Electronic Materials2199-160X2020-04-0164n/an/a10.1002/aelm.201901244A Silicon Nanowire Ferroelectric Field‐Effect TransistorVioletta Sessi0Maik Simon1Halid Mulaosmanovic2Darius Pohl3Markus Loeffler4Tom Mauersberger5Franz P. G. Fengler6Terence Mittmann7Claudia Richter8Stefan Slesazeck9Thomas Mikolajick10Walter M. Weber11Technische Universität Dresden Institut für Halbleiter‐ und Mikrosystemtechnik Professur für Nanoelektronische Materialien Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyCenter for Advancing Electronics Dresden (CfAED) 01069 Dresden GermanyCenter for Advancing Electronics Dresden (CfAED) 01069 Dresden GermanyTechnische Universität Dresden Institut für Halbleiter‐ und Mikrosystemtechnik Professur für Nanoelektronische Materialien Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyNaMLab gGmbH Nöthnitzer Str. 64a 01187 Dresden GermanyTechnische Universität Dresden Institut für Halbleiter‐ und Mikrosystemtechnik Professur für Nanoelektronische Materialien Nöthnitzer Str. 64a 01187 Dresden GermanyCenter for Advancing Electronics Dresden (CfAED) 01069 Dresden GermanyAbstract The design and characterization of a Schottky‐type ferroelectric field‐effect transistor based on a nominally undoped silicon nanowire are reported. The nanowire transistor is fabricated by top‐down technology starting from a silicon‐on insulator wafer. A thin ferroelectric Hf0.38Zr0.62O2 layer is integrated via a gate‐first approach. Abrupt Schottky source/drain contacts to the undoped silicon are provided by NiSi2 formation. Two distinct nonvolatile transistor states (programmed and erased) are observed in correspondence to negative and positive polarization in the ferroelectric layer, delivering a memory window of ≈1.5 V and, differently to conventional ferroelectric field effect transistors, yielding an on‐current difference of up to 30%. These results are interpreted as a combination of effects, arising from the proximity of the ferroelectric layer to both the channel and the Schottky‐junction regions. The threshold voltage shift, due to a polarization field acting on the channel, adds up to a polarization field‐driven tuning of the current injection through the Schottky‐source junction. This provides a strategy for manufacturing Schottky‐type nanoscale transistors with the add‐on nonvolatile option, following a complementary metal‐oxide‐semiconductor compatible process. In particular, the device concept is of great interest for achieving nonvolatile polarity modification in reconfigurable field‐effect transistors.https://doi.org/10.1002/aelm.201901244FeFETsferroelectricsHZOmultigate FETsnonvolatile memorySchottky‐barrier FETs
spellingShingle Violetta Sessi
Maik Simon
Halid Mulaosmanovic
Darius Pohl
Markus Loeffler
Tom Mauersberger
Franz P. G. Fengler
Terence Mittmann
Claudia Richter
Stefan Slesazeck
Thomas Mikolajick
Walter M. Weber
A Silicon Nanowire Ferroelectric Field‐Effect Transistor
Advanced Electronic Materials
FeFETs
ferroelectrics
HZO
multigate FETs
nonvolatile memory
Schottky‐barrier FETs
title A Silicon Nanowire Ferroelectric Field‐Effect Transistor
title_full A Silicon Nanowire Ferroelectric Field‐Effect Transistor
title_fullStr A Silicon Nanowire Ferroelectric Field‐Effect Transistor
title_full_unstemmed A Silicon Nanowire Ferroelectric Field‐Effect Transistor
title_short A Silicon Nanowire Ferroelectric Field‐Effect Transistor
title_sort silicon nanowire ferroelectric field effect transistor
topic FeFETs
ferroelectrics
HZO
multigate FETs
nonvolatile memory
Schottky‐barrier FETs
url https://doi.org/10.1002/aelm.201901244
work_keys_str_mv AT violettasessi asiliconnanowireferroelectricfieldeffecttransistor
AT maiksimon asiliconnanowireferroelectricfieldeffecttransistor
AT halidmulaosmanovic asiliconnanowireferroelectricfieldeffecttransistor
AT dariuspohl asiliconnanowireferroelectricfieldeffecttransistor
AT markusloeffler asiliconnanowireferroelectricfieldeffecttransistor
AT tommauersberger asiliconnanowireferroelectricfieldeffecttransistor
AT franzpgfengler asiliconnanowireferroelectricfieldeffecttransistor
AT terencemittmann asiliconnanowireferroelectricfieldeffecttransistor
AT claudiarichter asiliconnanowireferroelectricfieldeffecttransistor
AT stefanslesazeck asiliconnanowireferroelectricfieldeffecttransistor
AT thomasmikolajick asiliconnanowireferroelectricfieldeffecttransistor
AT waltermweber asiliconnanowireferroelectricfieldeffecttransistor
AT violettasessi siliconnanowireferroelectricfieldeffecttransistor
AT maiksimon siliconnanowireferroelectricfieldeffecttransistor
AT halidmulaosmanovic siliconnanowireferroelectricfieldeffecttransistor
AT dariuspohl siliconnanowireferroelectricfieldeffecttransistor
AT markusloeffler siliconnanowireferroelectricfieldeffecttransistor
AT tommauersberger siliconnanowireferroelectricfieldeffecttransistor
AT franzpgfengler siliconnanowireferroelectricfieldeffecttransistor
AT terencemittmann siliconnanowireferroelectricfieldeffecttransistor
AT claudiarichter siliconnanowireferroelectricfieldeffecttransistor
AT stefanslesazeck siliconnanowireferroelectricfieldeffecttransistor
AT thomasmikolajick siliconnanowireferroelectricfieldeffecttransistor
AT waltermweber siliconnanowireferroelectricfieldeffecttransistor