5-HMF attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis mice by inhibiting the MIF-CD74 interaction

The neuroprotective role of 5-hydroxymethyl-2-furfural (5-HMF) has been demonstrated in a variety of neurological diseases. The aim of this study is to investigate the effect of 5-HMF on multiple sclerosis (MS). IFN-γ-stimulated murine microglia (BV2 cells) are considered a cell model of MS. With 5-...

Full description

Bibliographic Details
Main Authors: Guan Dongsheng, Li Yingxia, Cui Yinglin, Zhao Huanghong, Dong Ning, Wang Kun, Ren Deqi, Song Tiantian, Wang Xiaojing, Jin Shijie, Gao Yinghe, Wang Mengmeng
Format: Article
Language:English
Published: China Science Publishing & Media Ltd. 2023-07-01
Series:Acta Biochimica et Biophysica Sinica
Subjects:
Online Access:https://www.sciengine.com/doi/10.3724/abbs.2023105
Description
Summary:The neuroprotective role of 5-hydroxymethyl-2-furfural (5-HMF) has been demonstrated in a variety of neurological diseases. The aim of this study is to investigate the effect of 5-HMF on multiple sclerosis (MS). IFN-γ-stimulated murine microglia (BV2 cells) are considered a cell model of MS. With 5-HMF treatment, microglial M1/2 polarization and cytokine levels are detected. The interaction of 5-HMF with migration inhibitory factor (MIF) is predicted using online databases. The experimental autoimmune encephalomyelitis (EAE) mouse model is established, followed by a 5-HMF injection. The results show that 5-HMF facilitates IFN-γ-stimulated microglial M2 polarization and attenuates the inflammatory response. According to the network pharmacology and molecular docking results, 5-HMF has a binding site for MIF. Further results show that blocking MIF activity or silencing CD74 enhances microglial M2 polarization, reduces inflammatory activity, and prevents ERK1/2 phosphorylation. 5-HMF inhibits the MIF-CD74 interaction by binding to MIF, thereby inhibiting microglial M1 polarization and enhancing the anti-inflammatory response. 5-HMF ameliorates EAE, inflammation, and demyelination in vivo. In conclusion, our research indicates that 5-HMF promotes microglial M2 polarization by inhibiting the MIF-CD74 interaction, thereby attenuating inflammation and demyelination in EAE mice.
ISSN:1672-9145