Role of Pharmacokinetic Effects in the Potentiation of Morphine Analgesia by L-Type Calcium Channel Blockers in Mice

The present study was designed to investigate the pharmacokinetic interaction of morphine with three classes of L-type calcium channel blockers (CCB) and its relationship to morphine-induced mechanical antinociception in mice. The CCB classes were benzothiazepine (diltiazem), dihydropyridine (nimodi...

Full description

Bibliographic Details
Main Authors: Norifumi Shimizu, Shiroh Kishioka, Takehiko Maeda, Yohji Fukazawa, Chizuko Yamamoto, Masanobu Ozaki, Hiroyuki Yamamoto
Format: Article
Language:English
Published: Elsevier 2004-01-01
Series:Journal of Pharmacological Sciences
Online Access:http://www.sciencedirect.com/science/article/pii/S1347861319324910
Description
Summary:The present study was designed to investigate the pharmacokinetic interaction of morphine with three classes of L-type calcium channel blockers (CCB) and its relationship to morphine-induced mechanical antinociception in mice. The CCB classes were benzothiazepine (diltiazem), dihydropyridine (nimodipine), and phenylalkylamine (verapamil). Each of the three classes of L-type CCB (diltiazem, 40 and 80 mg/kg; nimodipine, 40 mg/kg; verapamil, 40 mg/kg), when administered prior to morphine (4 mg/kg, s.c.), potentiated the analgesic effect of morphine and markedly increased the level of morphine in serum. Pretreatment with diltiazem (40 and 80 mg/kg) and verapamil (40 mg/kg) also increased morphine level in the brain. However, these drugs produced less increase in morphine level in the brain than they produced in serum (i.e., they decreased the brain-to-serum ratio of morphine). Pretreatment with nimodipine (40 mg/kg) did not affect the morphine level in the brain and also decreased the brain-to-serum ratio of morphine. When morphine (3.2 – 100 mg/kg, s.c.) was injected alone, the brain-to-serum ratio of morphine was constant, regardless of the morphine dose. These results suggest that increases in morphine concentration in peripheral blood may be, at least in part, involved in the ability of L-type CCBs to potentiate the analgesic effect of morphine. Keywords:: morphine analgesia, diltiazem, nimodipine, verapamil, pharmacokinetics
ISSN:1347-8613