Periodic solutions of semilinear equations at resonance with a $2n$-dimensional kernel
In this paper, we obtain some sufficient conditions for the existence of $2\pi$-periodic solutions of some semilinear equations at resonance where the kernel of the linear part has dimension $2n(n\ge 1)$. Our technique essentially bases on the Brouwer degree theory and Mawhin's coincidence degr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
1999-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5 |