DeepArrNet: An Efficient Deep CNN Architecture for Automatic Arrhythmia Detection and Classification From Denoised ECG Beats
In this paper, an efficient deep convolutional neural network (CNN) architecture is proposed based on depthwise temporal convolution along with a robust end-to-end scheme to automatically detect and classify arrhythmia from denoised electrocardiogram (ECG) signal, which is termed as `DeepArrNet'...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9104710/ |