Automating quality control in cardiac magnetic resonance: Artificial intelligence for discriminative assessment of planning and motion artifacts and real-time reacquisition guidance

Background: Accurate measurements from cardiovascular magnetic resonance (CMR) images require precise positioning of scan planes and elimination of motion artifacts from arrhythmia or breathing. Unidentified or incorrectly managed artifacts degrade image quality, invalidate clinical measurements, an...

ver descrição completa

Detalhes bibliográficos
Main Authors: Hoi C. Cheung, Kavitha Vimalesvaran, Sameer Zaman, Michalis Michaelides, Matthew J. Shun-Shin, Darrel P. Francis, Graham D. Cole, James P. Howard
Formato: Artigo
Idioma:English
Publicado em: Elsevier 2024-01-01
Colecção:Journal of Cardiovascular Magnetic Resonance
Assuntos:
Acesso em linha:http://www.sciencedirect.com/science/article/pii/S1097664724010949