A Model-Based Unsupervised Deep Learning Method for Low-Dose CT Reconstruction
Low-dose CT (LDCT) is of great significance due to the concern about the potential radiation risk. With the fast development of deep learning, neural networks have become powerful tools in LDCT enhancement. Current deep neural networks for LDCT reconstruction are often trained with paired LDCT datas...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9180342/ |