Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response

The synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line pan...

Full description

Bibliographic Details
Main Authors: Pia Burboa-Schettino, Carlos Bustos, Elies Molins, Xavier F. Figueroa, Jesus Llanquinao, Ximena Zarate, Gabriel Vallejos, Carlos Diaz-Uribe, William Vallejo, Eduardo Schott
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220301969
Description
Summary:The synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line panel, showing moderate to good activity against different cell lines. Furthermore, the anti-proinflammatory activity test of a set of pyrazoles of the form (E)-4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1-R-phenyl-1H-pyrazole was performed, this is based on the study of the blockage of the increase in intracellular [Ca2+] observed in response to platelet-activating factor (PAF) treatment of four pyrazoles (i.e. 6, 8, 9 and 10), which successfully displayed [Ca2+] channel inhibition. Therefore, the obtained intracellular [Ca2+] signal results indicate that the pyrazole family characterized in this study, in particular compounds 6 and 10, are potent blockers of the PAF-initiated Ca2+ signaling that mediates the hyperpermeability typically observed during the development of inflammation.
ISSN:1878-5352