Interactive Segmentation for Medical Images Using Spatial Modeling Mamba
Interactive segmentation methods utilize user-provided positive and negative clicks to guide the model in accurately segmenting target objects. Compared to fully automatic medical image segmentation, these methods can achieve higher segmentation accuracy with limited image data, demonstrating signif...
Hlavní autoři: | Yuxin Tang, Yu Li, Hua Zou, Xuedong Zhang |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2024-10-01
|
Edice: | Information |
Témata: | |
On-line přístup: | https://www.mdpi.com/2078-2489/15/10/633 |
Podobné jednotky
-
HFE-Mamba: High-Frequency Enhanced Mamba Network for Efficient Segmentation of Left Ventricle in Pediatric Echocardiograms
Autor: Zi Ye, a další
Vydáno: (2024-01-01) -
DeMambaNet: Deformable Convolution and Mamba Integration Network for High-Precision Segmentation of Ambiguously Defined Dental Radicular Boundaries
Autor: Binfeng Zou, a další
Vydáno: (2024-07-01) -
Cascade Residual Multiscale Convolution and Mamba-Structured UNet for Advanced Brain Tumor Image Segmentation
Autor: Rui Zhou, a další
Vydáno: (2024-04-01) -
Link Aggregation for Skip Connection–Mamba: Remote Sensing Image Segmentation Network Based on Link Aggregation Mamba
Autor: Qi Zhang, a další
Vydáno: (2024-09-01) -
A mixed Mamba U-net for prostate segmentation in MR images
Autor: Qiu Du, a další
Vydáno: (2024-08-01)