Graph convolutional network for predicting abnormal grain growth in Monte Carlo simulations of microstructural evolution
Abstract Recent developments in graph neural networks show promise for predicting the occurrence of abnormal grain growth, which has been a particularly challenging area of research due to its apparent stochastic nature. In this study, we generate a large dataset of Monte Carlo simulations of abnorm...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-12-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-81349-3 |