Combined effects of the Hardy potential and lower order terms in fractional Laplacian equations
Abstract In this paper we consider the existence and regularity of solutions to the following nonlocal Dirichlet problems: {(−Δ)su−λu|x|2s+up=f(x),x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, $$ \textstyle\begin{cases} (-\Delta)^{s} u-\lambda\frac{u}{|x|^{2s}}+u^{p}=f(x), &x\in\Omega, \\ u>0, &x\in\Omega,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-04-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-018-0980-4 |