Combined effects of the Hardy potential and lower order terms in fractional Laplacian equations

Abstract In this paper we consider the existence and regularity of solutions to the following nonlocal Dirichlet problems: {(−Δ)su−λu|x|2s+up=f(x),x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, $$ \textstyle\begin{cases} (-\Delta)^{s} u-\lambda\frac{u}{|x|^{2s}}+u^{p}=f(x), &x\in\Omega, \\ u>0, &x\in\Omega,...

Full description

Bibliographic Details
Main Authors: Yingyuan Mi, Shuibo Huang, Canyun Huang
Format: Article
Language:English
Published: SpringerOpen 2018-04-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-0980-4
Description
Summary:Abstract In this paper we consider the existence and regularity of solutions to the following nonlocal Dirichlet problems: {(−Δ)su−λu|x|2s+up=f(x),x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, $$ \textstyle\begin{cases} (-\Delta)^{s} u-\lambda\frac{u}{|x|^{2s}}+u^{p}=f(x), &x\in\Omega, \\ u>0, &x\in\Omega, \\ u=0, & x\in\mathbb{R}^{N}\setminus\Omega, \end{cases} $$ where (−Δ)s $(-\Delta)^{s}$ is the fractional Laplacian operator, s∈(0,1) $s\in(0,1)$, Ω⊂RN $\Omega\subset\mathbb{R}^{N}$ is a bounded domain with Lipschitz boundary such that 0∈Ω $0\in\Omega$, f is a nonnegative function that belongs to a suitable Lebesgue space.
ISSN:1687-2770