Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers
This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC). GNNs are still a relatively novel technique, and have shown great promise for similar reconstruction tasks in the LHC. In this paper, a...
主要な著者: | , , , , , , , , , , , , , , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
EDP Sciences
2021-01-01
|
シリーズ: | EPJ Web of Conferences |
オンライン・アクセス: | https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03054.pdf |