Structure–Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes

Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin–hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely cat...

Full description

Bibliographic Details
Main Authors: Jakub Novak, Ondrej Cerny, Adriana Osickova, Irena Linhartova, Jiri Masin, Ladislav Bumba, Peter Sebo, Radim Osicka
Format: Article
Language:English
Published: MDPI AG 2017-09-01
Series:Toxins
Subjects:
Online Access:https://www.mdpi.com/2072-6651/9/10/300
Description
Summary:Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin–hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ2) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3′,5′-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
ISSN:2072-6651