Minimizing the impact of microorganism intrusion on the concrete physical and mechanical properties with nickel waste as a partial substitution for cement

This study examined the impact of microorganism intrusion on concrete's physical and mechanical properties and efforts to minimize the effect by using nickel waste as a partial substitute for cement. The microorganisms resulted from the natural fermentation of coconut water which intruded into...

Full description

Bibliographic Details
Main Author: Hanafi Ashad
Format: Article
Language:English
Published: Elsevier 2023-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023005108
Description
Summary:This study examined the impact of microorganism intrusion on concrete's physical and mechanical properties and efforts to minimize the effect by using nickel waste as a partial substitute for cement. The microorganisms resulted from the natural fermentation of coconut water which intruded into the concrete material, harming the concrete's physical and mechanical properties. Physical and mechanical properties observed were porosity, permeability, and compressive strength. The results indicated that the intrusion of microorganisms into the concrete material increased porosity and permeability and decreased the compressive strength of the concrete. Using nickel slag as a partial cement substitution material with an optimal percentage of 15% was employed to overcome these impacts.
ISSN:2405-8440