Intelligent Fault Diagnosis of Rolling Bearing Based on Gramian Angular Difference Field and Improved Dual Attention Residual Network
With the rapid development of smart manufacturing, data-driven deep learning (DL) methods are widely used for bearing fault diagnosis. Aiming at the problem of model training crashes when data are imbalanced and the difficulty of traditional signal analysis methods in effectively extracting fault fe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/24/7/2156 |