Gradient Regularization as Approximate Variational Inference
We developed Variational Laplace for Bayesian neural networks (BNNs), which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational Laplace objective is simple to evaluate, as it is...
Hlavní autoři: | , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2021-12-01
|
Edice: | Entropy |
Témata: | |
On-line přístup: | https://www.mdpi.com/1099-4300/23/12/1629 |