Discriminative Auto-Encoder With Local and Global Graph Embedding
In order to exploit the potential intrinsic low-dimensional structure of the high-dimensional data from the manifold learning perspective, we propose a global graph embedding with globality-preserving property, which requires that samples should be mapped close to their low-dimensional class represe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8985268/ |